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FOREWORD

Source-free Maxwell equations are derived for an electromagnetic (carrier) wave
in an inhomogeneous medium exhibiting nonstationary linear response. The
non-stationarity is assumed to be slow in comparison with the carrier oscillation,
and the equations that result assume that time-derivatives of all slowly varying
quantities higher than the first order can be neglected. The equations form the
theoretical basis of analysis of the nonlinear dynamics of the coupling of laser
energy into a fluid, for the case of laser intensity below threshold for air
{plasma) breakdown.

Approved by:

N Y/

IRA M. BLATSTEIN, Head
Radiation Division

i Acceoian Yor .
o SO /
e -
Pl o

! SRR f
| L‘.
P i |
- By -
- D i !
- AV 3 )
@ . T v
r. Diay S
- |
b 1. '
e j
| k.
'@
3 i
e

NN

5

XX N




TETRTATE TR VRTLTN
PN NN

\.,.\. s

NSWC TR 83-100

CONTENTS

INTRODUCTION . . . . . . ¢ o v v v 4 v ¢ o o s
CONSTITUTIVE RELATION. . . . . . « . « ¢« « « &
FIELD EQUATIONS. . . . . . . . . « ¢« « . .

SLOW TIME-SCALE FIELD EQUATIONS. . . . . . . .

ONE-DIMENSIONAL MODEL. . . . . . ¢« « ¢ ¢ & o« « &

SUMMARY AND CONCLUSION . . . . . . . . . . .
ILLUSTRATIONS

THE ABSORPTION COEFFICIENT FOR LIQUID WATER AS
LINEAR FREQUENCY . . . . . + ¢« o ¢ ¢ o+ & &

LAMBERT ABSORPTION COEFFICIENT = AS A FUNCTION
AND WAVE LENGTH. . . . ¢« ¢ ¢ ¢ ¢ ¢ ¢ o & «

ii

A FUNCTION OF

OF WAVE NUMBER

* e o e« o & &

e T Y T T VT
IS AT AT AT S S AT AT)

11
15
25

29




et e
ROV SRR

NSWC TR 83-100

CHAPTER 1

INTRODUCTION

The physics of laser induced sound in liquids is divided into two parts,
the coupling of the electromagnetic energy of the light field into the fluid to
create a disturbed region, from which acoustic energy is rndiated, and the pro-
pagation, subsequently, of the radiated acoustic wave. In this report, I present
a brief examination of a nonlinear aspect of the first of these problems, for the

case of surface absorption.

Broadly, two principal coupling mechanisms of laser energy are absorption

by particulate impurities in the liquid, and absorption by dielectric loss.

Depending upon laser intensities and wavelength, dielectric loss in the fluid

may also entail dielectric breakdown. Particulate absorptionl and breakdown2

each has been observed in focal regions beneath the liquid surface, for water
using ruby lasers (A = 0.6943 um). Miniature volume explosions result in the
production of acoustic energy. Early reported observations of laser-induced
sound, again using a ruby laser, appeared consistent with simple linear dielectric
absorption below threshold for fluid breakdown, leading to thermal generation of

an acoustic stress wave.o

Early investigations also proved the utility of Nd:glass (A = 1.06 um) and of
CO2 (A = 10.6 um) lasers; in addition, dyes have been used to control the optical

absorption constant.? The linear optical absorption length,

als L, nis oo (1.1

where n is the complex refractive index of the fluid, varies with wavelength A
over as many as ten orders of magnitude in water. Thus in the visible region,

a-1 varies in water from a meter, or so, at the red end to several tens of meters
in the blue-green window, while in the ultra-violet, around 6003, it falls as low

as 100A(=0.01lum). On the long wavelength side, for Nd:glass laser light at

1.06 um, o=l = 6.0 cm, and it falls precipitously again (though non-monotonically),

four orders of magnitude to 11.8 um, at X = 10.6 um (COj).

'Bell, C. E., and Landt, J. A., Appl. Phys. Lett., Vol. 10, 1967, p. 46.

2Barnes, P. A., Studies of Laser-Induced Breakdown Phenomena in Water,
Ph.D. Thesis, Simon Fraser University, 1969,

3Carome, E. F., Moeller, C. E., and Clark, N. A., Appl. Phys. Lett., Vol. 4,
1964, p. 95.

“Gournay, Luke S., J. Appl. Phys., Vol. 40, 1966, p. 1322.




4 e
A .

¢ F 8 e
PR MRS i

L0,
'n':_/n'.

P AR
‘r,a,l LI

5 #
I .
'.’ \r Cate!

)
o)
LR

/

sy

NSWC TR 83-100

frequency, f = ¢/, for water.> Notc the strong absorption band centered at

V= 2,950 um, where x~1=0.840 um; see Figure 2 taken from recent reported data
in the infrared.® From tabulated data in Ref. 6, the refractive index of water
at A = 2,950 ym is n = 1.317+0.2821i, and at X = 10.6 um, n - 1,.18+0.0751.

Figure | shows the behavior of the real and imaginary parts of n as functions of

For small values of a-l, penetration of light into the medium is effectively
blocked, and the region of disturbed fluid is confined to a thin surface layer.
In the CO> laser case, where Aa-l & 10-3 cm, 3.10 j/cm2 is the minimum value for
time-integrated impulse laser intensity necessary to vaporize one absorption
depth of water from room temperature (20°C)._ The first reported CO; laser-induced
sound study in water is due to Bunkin, et al’, who observed surface vaporization.
(Vaporization also had been observed previously under other conditions by
Gournay.4) Numerical calculations were performed subsequently by Feiock and
Goodwin, 3 who used a one-dimensional hydrocode for an equilibrium vaporization
model, which included an inhomogeneous Beer's Law that assumed proportionality
of & to »~, where » is the (liquid-vapor) medium density.

In fact, surface vaporization, for modest conditions of laser intensity and
time-history, is readily achieved and is explosively sudden. A strong air shock,?
P/Pg = 47 bar, was formed above the water surface by absorption of a 1.67j COp TEA
laser pulse (150 ns FWHM) having a film burn diameter 0.80 cm. The spot diameter
on the water surface, as d:fined by the extent of maximal fluid disturbance
(shadowgraph pictures) was 0.68 cm. _The corresponding laser fluence (intensity
impulse) is 1.67/% x 0.68% = 4.6j/cm2, an uEper limit estimate only slightly
above the threshofd scale value of 3.1 j/cm cited earlier for vaporization of
one absorption depth.

The weak coupling case of low-level laser input, where only thermal
expansinn will occur, but no surface vaporization, gives acoustic pressures
proportional to K/Cp, where K is the volume coefficient of expansion and C, the
specific heat of the fluid. For water, K = 2.1x10-4(k°)~1, and C, = 4.2j/g-K°,
giving K/C, = 4.7x10-12(cm/sec)~2. For benzene, the same quantity has the value
bZ.leO'lzgcm/sec)‘z, which is an order of magnitude larger. The physics of
laser-induced thermoacoustic effects has received extensive treatment in_recent
(Soviet) literature, and has been reviewed recently by Lyamshev and Sedov.

Z’Gourrm,v, Luke S., J. Appl. Phys., Vol. 40, 1966, p. 1322.

)Iackson, J. D., Classical Electrodynamics (2nd Ed.) (New York: John Wiley &
sons, Inc., 1975), p. 291.

hI)owning, Harry D., and Williams, Dudley, J. Geophys. Res., Vol. 80, 1975,
p. 1956.

7Bunkin, F. V., Karlov, N. V., and Komissarov, V. M., Sov. Phys.--JETP Lett.,
Vol. 13, 1971, p. 341.

3Peiock, F. D., and Goodwin, L. K., J. Appl. Phys., Vol. 43, 1972, p. 5061.
9

1(

Bell, C. E., and Maccabee, B. S., Applied Uptics, Vol. 13, 1974, p. 605.

)Lynmshev, I.. M., and Sedov, L. V., Sov. Phys.--Acoustics, Vol 27, 1981,

P -/0.
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THE ABSORPTION COEFFICIENT FOR LIQUID WATER AS A FUNCTION OF LINEAR FREQUENCY
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in contrast, theories of the surface vaporization processes, also reviewed
very recently, by Lyamshev and Naugol' nykh'll -_ who include the topics of
nonlinear thermoacoustics and optically induced dielectric breakdown, as
well -- are much less well-developed. Two cases (at least) have to be distin-
guished: (1) High laser intensity, where a plasma is formed above the surface.
In the model of Pirri,!? sensibly all of the energy absorption occurs in the
plasma, which forms the leading edge of a detonation front (laser supported
detonation wave) that advances in the opposite direction to that of the laser
beam propagation. The force delivered to the water surface is the result of
shocking the air to high pressure. (2) Low laser intensity, where rapid and
sustained vaporization occurs, but no plasma front is created. In this case, the
laser energy deposition goes directly into the vapor and the liquid. In both
cases, a flow field must be determined in order to predict the full fluid
disturbance from which the acoustic pulse is radiated;13 both the absorption and
stress coupling processes in the two cases are different. I will not consider
case 1 here, but only case 2.

It is not clear that the flow in the vaporization process is steady since
the vaporization layer itself will be no more than a few molecular diameters
thick, and is probably unstable.l4 The absorption properties of the vapor and
heated water to the incident light will vary with time and with space through the
density and temperature dependence of the electromagnetic response functions
(dielectric constant), even without a surface instability of the vaporization
layer. So, the complete laser field will be affected in the fluid. Except for
approximate allowances for dielectric inhomogeneity (e.g., Ref. 8), this aspect
of the laser-liquid coupling problem appears not to have received any attention,
so far; that aspect is the subject of the present report. The main purpose of
an investigation of this kind is to search out and identify mechanisms for
optimizing laser energy coupling. Accordingly, I will not restrict the analysis
to the case of 10.6 pym radiation in water, exclusively, but will be concerned
more generally with nonlinear time-dependent dielectric coupling dynamics,
broadly appropriate to the surface evaporation process.

The plan of the report is as follows. In Section 2, I specify the physical
basis of the equations to be derived subsequently, which is the constitutive
relation for adiabatic non-stationary response of an inhomogeneous, local
dielectric. In Section 3, I derive the source-free Maxwell equations, for a
medium defined in the previous section. In Section 4, I develop the slow time-
scale approximation scheme and derive equations of the evelope fields of a pulse

llLyamshev, .. M., and Naugol'nykh, K. A., Sov. Phys.--Acoustics, Vol. 27,
1981, p. 357.

12Pirri, Anthony N., Phys. of Fluids, Vol. 16, 1973, p. 1435,

13Lighthill, M. J., Proc. Roy. Soc. London, Vol A211, 1952, p. 564, and
Vol. A222, 1954, p. 1. See also Robert T. Beyer, Nonlinear Acoustics,
written for the Naval Sea Systems Cowmnand, 1974.

1]
14Anisimov, S. I., Tribel'skii, M. I., and Epel'baum, Y. G., Sov. Phys.--
JETP, Vol. 51, 1930, p. 802,

...................................
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wave with a high frequency carrier. In Section 5, [ specialize these equations
to the case of a one-dimensionally stratified medium, and appropriate to a wave
incident normally in the fluid. I also give a short physical discussion of
limiting cases, leaving the more detailed analyses needed, for later. In Section
6, I summarize the report, and make a couple of concluding remarks.
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CHAPTER 2

CONSTITUTIVE RELATION

The complex dielectric function for water is a function of density p, and of
temperature T also. This can be significant in the surface regions especially,
and at the vaporization front. Thermal and hydrodyvnamic response to the laser
field create spatial inhomogeneity and time-dependence (non-stationarity) of
medium response functions so that the linear (and local)® dielectric displacement
is given by

D%, ) = fat' e(X,t5t-tDER,t). 2.1
The time-scale for the explicit t-dependence shown for e is that for variation
of p and T, and will be assumed very long and slow in comparison with the laser
gcarrier) period £-1 = x/¢c = 0.03 ps, for » = 10.6 um. If the t-dependence of
= may be regarded as adiabatic, we may write

(X, t; t-t") =~ c(0,T; t-t') (2.2)

where the quantity on the right hand side is the response function for a
stationary medium, having density and temperature given by the values in the
fluid at time t. The explicit (x,t)-dependence required is then assumed to
enter through that realized in the dynamics of the fluid for p and T; viz.
p=p(X,t) and T=T(X,t). Eq. (2.1) now becomes

DX, t) =S de'e (p(X, ), TR, 0) 5 t-t E(X, ") (2.3a)
= eop(o,T)E, (2.3b)

where egp denotes the integral operator in the first equation. The limitation to
the validity of the quasi-static approximation, eqs. (2.2) and (2.3), cannot be
assessed without a microscopic (molecular radiator) theory of the laser field
absorption process, which is outside the scope of the present analysis from
assumptions of classical response.

%

In eq. (2.1), more generally, an integral over K‘Ais also present; but for

local response, the most general (linear) Kernel ¢ = e (X,t;X,t") is proportional
tos(3) (X-2'), which results in eq. (2.1).




v
.
0
s
4
s
v
.
.
.
.
.
.
.
.
.
.
a
'
2
)
.
]
]
.
3
.
a
)
.
[
.
’
s
1
4

Tg vo e Ty
e
T

. v 1

‘@ NSWC TR 83-100

o~

;:: For a stationary medium, with p,T independent of t, Eq. (2.3) is a
=}: convolution, so its Fourier transform with respect to the time is

v D(X,w) = e(p,T;0)E(X,0), (2.4)

o with an obvious notation; in particular e(p,t;w) is the Fourier transform of the

e right side. of Eq. (2.2), but with p,T independent of t. When explicit t-depen-

A dence from medium response is present in €, Eq. (2.4) does not follow from

:j{ Eq. (2.3).

A Finally, the dc-conductivity o depends upon the thermodynamic state of the !

du fluid also, o=0(p,T), and

el JX, 1) = o(p(X,t), T(X,t) (E(X,1) (2.5) 1
::f is the quasi-static model anélogue of Eq. (2.3).

- The electromagnetic fields of the laser wave in the fluid will have a fast

-

BN and a slow time-scale (envelope) part, and equations for the latter will be
derived. Preparatory to attendant labors of this effort I list a few relation-
ships issuing from eq. (2.3). The simplest is

- = v .
?‘ vxD eop(p,T)xE + eop(p,T)VxE, (2.6a)
:ﬂj where the meaning of the first term on the right side is
” Veop(p,T)xE;fdt'VE(p(z,t),T(?,t),t-t')xE(t'). (2.6b)
o If E = 0 at t>-», differentiation of eq. (2.3a) gives
N 3¢ (p,T)
> ab__op " ° 3E 7
?_\ 3t ot -E + € (p,T) 3t’ (2.7a)
:jf where
e 3 T . R
° foptel) forr 22CEDIED ) (2. 7b)
Y at B at )
AM
W,
R 4
;:f in which t-t' is held fixed for the derivative of €. Various further relations
.
. L
:f
:j-
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follow similarly, such as,

) aVeo SE
3% (Veopr) = —ET—RXE + Veopx 3T (2.8)

f

In what follows, I will suppress the p,T dependence of €op 1in the notation, and
[ will drop the "op" suffix as well.

Finally, I also need the inverse of the integral operator ¢, which I define
by

A
E(t) = (7 - D)(v) =fdtre (o, Tit-t)D (). (2.9)
Substituting Eq. (2.3a), and denoting t'-dependence by primes on p and T,

/\
E(t) =fdt'fdt"e'1(p,T,t-t')e(p',T';t'-t")E(t") (2.10)

whence, since E is arbitrary,

/\
Jatr e 1o, Tittye(o!, T -t = 6(t-t"). (2.11a)

Similarly, starting from D = €E, one finds
A A
.fdt'e(p,T;t—t')e—l(p',T';t'—t”) = §(t-t"). (2.11b)
Notice that
/\ A
Savre™ o, Tt-te(, Tt -t # 8(t-t™) (2.12)

unless 3p/3t = 0 and 3T/3t = 0; this parallels the remark made earlier concerning
Eq. (2.4). Notice also that the left sides of Eqs. (2.11) are not convolutions.

e W e

%0y W \-.-‘.;\.-\.;". LN “.--‘ BT IS
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Note, finally, that Eq. (2.11), which I may write more economically as

e o=l (2.13)
implies
ve ™l ez el v, (2.14)

. >
since §(t-t") has no x-dependence. In the same way,

ve - e1 = -e- VE'I. (2.15)
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CHAPTER 3

FIELD EQUATIONS

Taking the curl of

. _ 1B <
UxE = T (3.1)
and using
4no 1 3D
= 219 = 2= .2
UxB — E+ 230 (3.2)
gives
2 4m 3 1 ‘82D
V" E - =% —— (0E) - =, —5 = V(V-E), (3.3)
2 3t 2 ,.2
c c” 9dt
2

llere VxVxz-V“+9Y(V.) has been used. Similarly, Eq. (3.2), together with V-B = 0,

gives

2 47 _ 1 3
VB = - e Vx(oE) - EE(VXD). (3.4)

To throw Eq. (3.4) into a wave equation form, I have to manipulate the last

term, making liberal use of Eqs. (2.3) - (2.9). Using Eq. (3.1), Eq. (3.4)

2 47

1 3
VB---C—-VX(O'E) - et

at

11

L] A TP R .'-.'_ -
Do \Alﬂha;;ﬂ&

(VexE + €VxE), (3.5)
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reads

2
2 e 3B 4m 1 3Ve 1 9E
V°B - c2 -a—t—z = - Vx(cE) - C 3t XE - E-Vexa—t- +

For the third term on the right, I use Eq. (3.2), with Eq. (2.3), to write

1 3E _ -1fe JE\_ -1} [e 3SE
o Vexst— Z Vexe (c ﬁ)_(Ve- € )x(C at)

= ve-e ! x(YxB _4mo g | l-EE-E);
c c dt

while for the first, I use Eq. (3.1), and have

4 4n 4no 3B
E—-VX(OE) = E—-VGXE - :2—— 3T

Substituting these into Eq. (3.6), one arrives at

2 ¢ 32 -1 1 [oe 3B
(V -5 ——Z)B + (Ve-e )xVxB - _2(?5 + 41ro)§—f
¢ at c
_ ] L1 WA WIS 2
= - EV(4TTO‘ + t))(E + CVe-e (41ro + at)xE

(3.6)

(3.7)

(3.8)

(3.9)

A somewhat less involved treatment of Eq. (3.3), but along the same lines, gives

2
2 € 3 1 e JE
V' - 5 —<JE - =52 + 4mo}— - V(V-E)
( c2 at?) CZ(at )at

12

(3.10)
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£qs. (3.9) and (3.10) are exact consequences of Maxwell's equation for a
nonstationary inhomoheneous medium characterized by constitutive relations
defined by Eqs. (2.3) and (2.5). The special case o+0 and 3¢/3t~>0 gives the
tield equations,

5
2 “ -
VT o- E—-E——-B +[e 1Ve xfvxB Y =0 (3.11)
C2 3t2 0 o}

2 2
€
vo- 5 E, - V(V-EO)— 0, (3.12)
. . C t

which agrees with standard textbook results for stationary media.lS

W

N

15

N e d & &8 & & B &

Landau, L. D., and Lifshitz, E. M., Electrodynamics of Continuous Media,
(Reading, Massachusetts: Addison-Wesley, 1960), p. 284ff.

13/14
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CHAPTER 4

SLOW TIME-SCALE FIELD EQUATIONS

I denote the laser frequency now by w, and write the fields as

m
1

Re(E exp-iwt) (4.1)

o=
1]

Re(B exp-iwt), (4.2)

where E and B are spatially and (slowly) time-varying complex envelope fields.
In Eqs. (3.9) and (3.10) it is necessary to evaluate several integral operator
expressions, such as

2 2'\ . ] 3 L
3 ; E = Refdt 37e(p,T;t-t )e-lwt

ot at

E(t'), (4.3)

where [ have suppressed the ;-dependence of £E. The right side of Eq. (4.3) has
the general form

Re[e-mt drfl(p,T;T)eimT E(t-r)] , (4.4)

where I have changed variables with t'zt-t. Expanding E about 1=0 gives the
quantity in the square bracket formally, with E (M) (t)=3"E/3t", as

15
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. Nt (n) . N
o-iwt Z E_nfi)_fdr(-T)neleh(p ,T571)

X n=o
o . = .n n .
e I - IO AL
- n=o0 ° dw
9,
\'._\.
.4:.\
_.-':: _ -iwt . idE dh(p,T;w)
:,\ =e [E(t)h(p,T,w) + Jat w—Tm—— +... 1, (4.5)
1-"\
\.A
j'_.-l where h is the Fourier transform of h. Thus, for Eq. (4.3),
- aze(p T;w) (4.6)
h =h (o,Tjw) = —=5—2—
" ot
ol In Eq. (4.5) the ratio of the second term to the first is of order (m’t‘)_l, where
\ t is a time-scale for significant variation of E; since this ratio is extremely
o small for the adiabatic conditions of the problem, only the first term has to be
'_‘}_.j retained. In this way, Eq. (4.3) becomes, to very good approximation,
o 2 i 2
) i E::Re[e_lwt 3——28(“’) E], (4.7)
g t It
::'j:' where I have written ¢(y) for ¢(p,T;w) to simplify notation.
o
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Similarly, the term containing 9EA t in Eq.
of the form

ﬁlt hip,T;t-t' )Bt'( 1“’t'f:’(t'))
- e_iw:c/‘drl;(p,T;T)eiWT(-luﬁ-——) (t-1)

. .n n
s i f. 5 Y(n) d h(p,T;w)
s YT Z l <‘1‘"+a t)’ (t) n ’
n=o0 dw

(3.10) involves an expression

(4.8)
where now h =3¢/3t, while thed “EA t"-term involves
.N 2
-iwt i -w2-7iu§—-— Ki F(n)(t) dh(p,T;w) (4.9)
] “ - > .
o ! t tz de"

in which h = ¢. The lowest terms in Eq. (4.8), out to the same order as the

32e/5 t2 -term in Eq. (4.7), include the n = 1 coefficient of -iw, so that
deJIE _ -iwt de(w) . d)oe(w) 3 E
573 {Re e [1 St +<1-1wdw> 5T sl ( (4.10)
while, again to the same order, Eq. (4.9) gives
Z)ZE -iwt 2 1 d ;
e—= = Re{e —w e(w)E - 2i0fl + = (w)
2 2 “dw
it
d .1 2d° 3
+11+ Zw'cm+'§w‘——2 e(w ) 3 . (4.11)
dw 3t
17
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a I neglect terms involving the second time derivatives of adiabatically
: varying quantities from here on. Collecting results, Eq. (3.10) finally
- reduces to

| A
o 2 w2 (E)
e ViS5 (w)|E - V(V-E)
o I c
- \:
O 2iw wd oE _
R e ) S T (4.12)
S where
&v
% eB ) = e + L anos 218 2120 (4.13)
(o ©) o= el Ty ATe iv T 7t .
”i Three of the terms in Eq. (3.9) for the magnetic field involve compositions
o of integral operators; in addition, they all involve e=1. Each of these features
i;} results in further complications requiring special attention. The term containing
o VxB, on the left side, involves
I
ff? (Ve-e™!) x curl B = Re dt"(Vs-e°1) (t,t°*)
”?u x curl e MY B (¢, (4.14)
‘-::‘
!‘
... * . -iwt
o Eq. (3.10) asserts the vanishing of an expression of the form R(e P,
o where F is the left side of Eq. (4.12). Since F is sensibly constant for
e variations of t on the scale of w-1, this condition evaluated at t = 0 and
e t = n/2w implies the separate vanishing of real and imaginary parts of F,
B whence follows Eq. (4.12),
[ ]
N 18
oo
o
f:;
-:.'i
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where

/N

-1 fdt'VE (p,T;t-t" e 1

Ve £ (t,t°7)

(p°,T";t"-t"") (4.15)

Proceeding as before, with the variable change t~““=t-1, and with the Taylor
series expansion for B(t-1),

(Ve e-l)x curl B = Re e—lwt/;T(Vs El)(t,t-t )elwT x curl B(t-1)

00 v

. .n .n .
= Re|e” ™" § :rll_'d_u;n ﬁtele (Ve e_l) (t,t-1)
n=0 ° d
x curl BW (v, (4.16)

e ey T m® e
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Substituting Eq. (4.15), with some arranging of the arguments of the exponential,
and of o7, s

~[ér T (e e (t,t-1) =./;t/;t’ Mt ge (o, T5e-17)

o A
olw(tr-t *T)g’lrp(t-(t—t‘) ,T(e-(t-t7)); to-t+1)

iwtl R iwt
i/ﬁtl e Ve (o,Tit))fdr, e 1

/\

-1 .
c (o(t-tl),rct-tl),rl)
n ,n iwt
1 d 1.7 .
= E F—r‘(ﬁtle Va(p,'r,tl))
n= dw

n iwty 7y 4.17
o jgte Lt o,Tsmy (4.17)
at? 1

~
where in the last line I have performed a Taylor expansion again, this time of e-1
about ty; = 0. If I now adopt the notation

iwrl 1 -1
./;rle £ (p,T;Tl) 2 ¢ (w), (4.18)

i

N (rr'
ae
r3 4

 YAx
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N Eq. (4.17) takes the more economical form

~/h1ein (Ve.e-l)(t,t—r)

oo

L _ Z; i d"7e () a“s‘l(w). (4.19)
n:

1
n. dmn 3 tn

As noted earlier, Eqs. (2.11) do not have the form of convolutions, a
\ consequence of which is that e‘l(w) # 1/e(w), as would be the case for stationary
medium response. Starting from Eq. (2.11a), with t°° = t-t, the analysis leading
to Eq. (4.19) can be applied, mutatis mutandis, to give

- Lo

; . 2; i gt el 2o (w) (4. 20)
! VA

]
n: dw" 3 t"

.
0".' l‘

from which a formal expression of e€-1(w) can be constructed recursively. In the
L lowest order, adiabatic approximation, Eq. (4.20) reads

-1
el wew =1 -1 L) delw) (4.21)

d 50 that

, ~1 ! g_ 1 3 e (w) 2y
? e (W) = e(w) e(w) dw (e(w)) 3t ’ (4.22)

) which is sufficient for purposes of the present problem. Eq. (4.20) and
4 Eq. (4.22) both reduce to the stationary medium result in the limit of e(w)
S independent of t.

21
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combining Eq. (4.19) and (4.22), one has

iwt -1 P! i d [1 3 e(w)
.ﬁ“e (Vere ") (t,t-1) =[s(w) € (@) dw(s(w))at ] Ve (w)
cik (___el(w)) L veqw), (4.23)

for use in Eq. (4.16); substituting, one arrives, after a little algebra, at

<V5-5_1>x curl B = Re{e-iwt[s—l(-;)vé:(w)x curl B(t)

i dlog e(w) d
It dw

+ i %(v log e(w)) x curl g—f—]; (4.24)

v log e(w) x curl B (t)

That leaves the last two of the four terms on the right side of Eq. (3.9).
The first of these is similar to (4.16),

(Vs-e'l>on = Re[e_lwtfdr Ve-e-l (t.t’.-r)elw‘r xo(t—r)E(t-r)]
. e .n ,n .
= Re[e_l“’t 1—'-d__<fdrewr(Ve.e-l)(t,t-r))
n! 40

PPN SRR,

A

(4.25)

1. "‘ ‘l

>

IQ)

=
=
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whence, with the aid of Eqs. (4.19) and (4.22),

(Vs-e-l)on 2 Re{e-iwt[ec(’w)w (w)xE

-ic a—19-%&)%”—(V10g e(w)) xE + i—g—Lu—(Vlog e(m)) X g—E(OE)]} (4.26)

The remaining term contains a product of three operators; but it is also already
of first order smallness in the adiabatic regime. One has

xE(t) + ] (4.27)

with

‘/;lrein<Ve-e-1° g—i-)(t,t—ﬂ
iwt
=fdtle 1<Ve-e'1)(t,t-tl) . g%(—“’—)-

1 de(w)
(o) Ve (w) STt e (4.28)
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so that
- ] . -1
Ve-e 1 a—i x E = Re[e lwtg—im - Vlog e(w) xE (t)]. (4.29)

The equation to be satisfied by B(t), analogous to Eq. (4.12) for E(t), can
be written down directly after substituting Eq. (4.2) into Eq. (3.9) by making
use of the foregoing results, viz. Eqs. (4.11), (4.24), (4.10), Eq. (4.5) with
h= %{w) /@ t, and Eqs. (4.26) and (4.29). That equation is

2
2
[V + :—2 e(B) (w)]B + (1 - i Q;:g“d“i ?E)Vlog e{w) x curl B
. d 9B 2iw wd 3B
+ 1 dw(VIOg e(w))x curl 5t c2 (1 + Ea—))e(w)- 5t
_ Ak
= a(e,0) x E + b(e,0) X3 (4.30)
where
B .
B ) = e() + %(4% + g_.——i(“’)> (4.31a)
o dmg oy, jiloge d
a(e,o0) = - < Jo+ < (1 + 1 3T du))Vlog £ (w)
.30 d € 3
+ 1 3t Ew—Vlog € (w) - Ea—tv log e(w) (4.31b)
=324
b(e,o) = i < d V log e(w). (4.31c)
Eqs. (4.12) and (4.30) are the slow time-scale equations of the wave. No

approximations have been made regarding spatially varying properties of the medium.
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CHAPTER 5

ONE-DIMENSIONAL MODEL

1 assume a one-dimensionally stratified fluid now, for which e depends
significantly upon only one of the three spatial variables, z, so that

QQ

Ve = z 25, (5.1)

@

~ PN

where z is a unit-vector along the positive z - axis (downward into the fluid, let

us say.) Eqs. (4.12) and (4.30) are consistent in_this case with vanishing
z - components of the field amplitudes. Assuming E,= 0, one can derive V.€ = 0

from V.0 = 0; one has

V-(eE) = Ve-E + € V. = 0 (5.2)
so that

V:E = -¢ 'Ve.E =0, E = 0. (5.3)

From Eq. (5.3) and Eq. (4.1), Eq. (4.12) then becomes

2 -
2, W () diw w d Scx 5.4
[V+c_2's Wit 2\l 7@ @ =0 .
c
with a similar equation for E,. I consider here only the case that the direction of

E is constant and uniform, hcwever, which I take now to be the Xx-axis,
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Then Eq. (4.30) supports solutions,
B = By y y = zXX. (5.6)
From B_= 0,
z
3 log e(w) °B (5.7)
Vloge(w)xcurlB=-—a—Z-g-———ﬁY-, )

with a similar equation for the curl @ BA t) - term in (4.30). The equation that
results for By is

2
2 . 9log e(w) d \ 3log e{w) s, w (B
[V } (1 X dw) 5z 5z © 2 € (“’)] By

¢ (ttoge@)o2By 200 ;L wd ) o aBy
ldw( 3z )823t+c2 Ry O -

= de,0) +b (e,0) E,. (5.8)

Eq. (5.4) for Ex is readily interpreted. Its time-independent form, with
also o = 0, is

2 wz
v+ 2 e(w))Ex =0, (5.9)

by Eq. (4.13). This is the usual time-independent "Schrddinger" equation for
propagation in an inhomogeneous medium, with ¢ playing the role of (optical)
potential. The eikonal, or WKB approximation to Eq. (5.9), for the case

v > 32/322, is

z
Ex = ExO exp ikofdz'Ve:(p('z’),T(Z’);w) (5.10)
0

26
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where K < w/c¢ and E4y is a constant, and where the positive square root (forward
propaga?ing, damped solution) is understood. When the WKB approximation is invalid,
which is the case of significant z-dependence of € on the scale of c/w = k51 : %,
the solution, Eq. (5.10}, no longer holds, and Eq. (5.9) has to be solved explicitly.
Finally, in Eq. (5.4), the time derivative term reflects a wave dynamical effect

associated with medium non-stationarity.

Eq. (5.8) for By is more complicated, a situation also true in the time-
independent, stationary medium limit. In the latter case, with also o = 0 again,
Eq. (5.8) becomes

2
2 3log e(w) B . w” ) i}
(v e cze (w) By-o. (5.11)
The substitution,
B = JJeiw) B, (5.12)

2 wz g
v _—F = .13
( * 3 e(w)By 0, (5.13)

the same form as Eq. (5.9), but with now

2 2 2
Tw) = e(w) + _C_z[.;_ EL_I%g__E_gg_)_ - %(%!zgg_e_(.‘ﬁ’.)_) ] (5.14)
w dz

This recovers the text-book result again,16 including the equality € * € in the
vcometrical optics approximation. For nonstationary media, the substitution of

16Landau, L. D., and Lifshitz, E. M., Electrodynamics of Continuous Media,

(Reading, Massachusetts: Addison-Wesley, 1960, p. 284ff.
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(5.12) does not accomplish the same effect owing to the presence of the cross-
derivative, 32/ Bz -term in eq. (5.8). Evidently also, this term reflects an
additional coupling effect between medium inhomogeneity and nonstationarity.

Eqs. (5.4) and (5.8) have a somewhat different charactor due to the
cross-derivative term in the latter. But the former is closely related to the
equation for propagation in a medium with spatially nonuniform gain, viz.

2 L9 :
(Vl -2 ik a—-z->e = -ikGe, (5.15)

2
where Vf =9 ﬁ)xz + azﬂ)yz, e = e(x,y,z) is the envelope emplitude and G = G(X,y,Z)

is the gain function. Eq. (5.15) has recently been solved analytically, for
specified G, by B. N. Perry, et al.,l’ and techniques introduced by these workers
should be useful for limiting model forms of eq. (5.4).

Eqs. (5.4) and (5.8) both should be amenable to treatment in a WKB approxit
mation at least, which will shed further light on the physical nature of essential
effects associated with medium nonstationary. I plan to do this later.

Iy
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E- *The substitution that does 1t is By = ug;, with u being a solution of :
” du _ '

; 2 — 37 bl 5?-+ aju = 0,

f where a, is the coefficient of ZJByﬁz and b1 the coefficient of 323yﬁ)zat.

;! 17Perry, B. N., Rabinowitz, P., and Newstein, M., Phys. Rev. Lett., Vol. 49, 1982,

. p. 1921.
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CHAPTER 6

SUMMARY AND CONCLUSION

I have derived slow time-scale source-free Maxwell equations for a nonstation-
ary, inhomogeneous medium, assuming a high frequency carrier and slowly varying
response functions for the medium. The electric and magnetic complex field
amplitude equations are Eq. (4.12) and (4.30).

In nearly all work done on the physics of the coupling of laser energy into
fluid, the complex dielectric function e(w) is assumed spatially uniform and
constant. In fact, it is a function of fluid temperature and density, which in
many practical cases are functions of position, with steep spatial gradients,
and of time. Where the assumptions of homogeneity and stationarity have not been
made, as in Ref. 8, a WKB approximation has been used. The equations derived in
the present report are designed to permit exploration of effects for energy
coupling dynamics of these factors.




4Rt

NSWC TR 83-100

DISTRIBUTION

Defense Technical Information Center

Cameron Station
Alexandria, VA 22314

Library of Congress

Attn: Gift and Exchange Division

Washington, DC 20540

Naval Sea Systems Command
Attn:
Washington, DC 20362

Internal Distribution:

E431
E432
E35
FO1 (CDR F. R. Seddon)
F40 (Jim Miller)
(Tom Pendergraft)
F43 (K. L. Anderson )
(D. Armstead)
(C. E. Bell)
(Robert Jehle)
G41 (W. A. Walker)
RO4 (D. Love)
R40
R42 (W. Caswell)
(Carl Larson)
(Bruce Maccabee)

R43 (G. Guanaurd)

Code 06R (D.J. Pastine)

1)

e B N S RS S R B B R N B W NN N N Lt N N

A

Coples

12

L T T e S O T = e I T I Y-

«

Wt e T e o

O R T T T TS







